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ABSTRACT

A number of important problems in applied mathematics can be reduced to find-

ing stationary values of functionals (maxima, minima, and critical values). For

functionals defined in terms of integrals, the method of interval integration pro-

vides a way to obtain interval (two-sided) bounds for these stationary values. As

a special case of this method, upper and lower bounds for eigenvalues of linear

operators can be obtained. The inclusion of stationary values in intervals is

based on the use of interval functions which include the function for which the

functional is stationary, and its derivatives. A simple way to construct such

interval functions is given, and examples are presented of a minimum and an eigen-

value problem. The improvement of initial results by iteration is indicated.

AMS (MOS) Subject Classifications: 49-00, 49A29, 49G05, 34B25, 35P15, 45C05,
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SIGNIFICANCE AND EXPLANATION

Solutions to many problems in physical mathematics and applied analysis can

be found as maxima, minima, or other critical points of certain functionals de-

fined in terms of integrals. Such points are called stationary points of the

functional, and include, for example, eigenvalues of linear operators. The solu-

tion of these so-called variational problems by scientific computation can be im-

proved, in many cases, by the use of interval integration, which yields two-sided

bound (that is, lower and upper bounds, or simply interval bounds) for stationary

values. In order to apply this method, one needs a set of interval functions

which enclose a function for which the functional is stationary. A way to con-

struct such interval functions, using the boundary conditions and reasonable

assumptions on the highest derivatives is given, and the possibility of obtaining

improved bounds by iteration is indicated. The use of interval methods has the

additional advantage that interval values can be assigned to the boundary condi-

tions, so that problems in which the boundary conditions are not known precisely

can be studied, or the response of a system to a range of conditions can be

estimated.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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INTERVAL BOUNDS FOR STATIONARY VALUES OF FUNCTIONALS

L. B. Rall

1. Variational problems. A number of important problems in physical mathe-

matics and applied analysis, particularly the calculus of variations and control

theory, reduce to finding maxima and minima of functionals

(1.1) f - fly], y e A,

where A is the class of adm6ibte duncton for the problem. In addition to the

extAemat vatue

(1.2) f - min{ffy]), ma{f~y]1.- y1EA fY} f"= yEA~fy}

of f, one may seek its c.iticat vat&ez

(1.3) f* - f[y*],

where the cAitiat point y* 4 A of f satisfies the EuteA equation

(1.4) f' [y] 0,

it being assumed in this case that the G&teaux derivative f' of f exists on A [51.

Under this assumption, ext~emat poiint y,y E intA such that f - fly], f[y]

will be critical points of f [2). For simplicity, extremal and critical points and

values of a functional will be called its taonojy points and values, respective-

ly. A vo~iationa. p'wbem for f on A is to find one or more of the pairs (f,y),

S
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(f,y), (f*,y*), if such exist.

An &ntevat bound for a stationary value f* of a functional f is simply an

interval [a,bj such that f* 6 (a,bJ, that is,

(1.5) a S f* 5 b.

For functionals defined in terms of integrals, such as
I xl

(1.6) fly) f f(xoy~y'y ... y(n))dx, y E A,
x 
0

it will be shown that the method of interval integration [1), (4), provides a

way to obtain interval bounds for stationary values of f. in the variational

problem for f defined by (1.6), the class A of admissible functions is usually

characterized by continuity, differentiability, and boundary conditions on y.

It should be noted that one-aided bounds for extremal values are easy to

obtain: For arbitrary k C A, one has

(1.7) f S f( It S .

Lower bounds for minima and upper bounds for maxima, however, are often not easy

to obtain, and in the case of nonextremal stationary values (such as intermediate

sigenvalues of a linear operator), one is often completely in the dark. The two-

sided bounds (1.5) furnished by interval integration are easy to compute, by con-

trast, as will be seen below. The methodology will be developed for functionals

of the form (1.6) for clarity, and its imediate extension to several independent

variables will be presented in the final section.

2. Interval integration. Interval analysis (31 is the branch of mathematics

which takes real bounded intervals la,b) as its basic units, and studies trans-

formations of them. Its relationship to real analysis is somewhat analogous to

that of complex analysis, since the reals can be identified with the subset of

intervals which have equal endpoints, the so-called degenekate intervals x - [x,x]

for real x. An inteAvat 6unct.on Y of a real variable x assigns the interval

2
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(x) ,y(x)] to each x in its interval of definition X - [x0,xl|. The -Lneu

integ4at of Y over X is the interval

x xx1 x1

(2.1) fXY(x)dx- [(L) f y(x)dx , (UD) f y(x)dx],
x0 x0

where (LD) and (UD) denote lower and upper Darboux integrals, respectively (1].

Since these Darboux integrals exist for all real functions, it follows that all

interval functions are integrable, and hence integration is a universal operation

in interval analysis [1].

In the study of interval transformations, the transformation T of X into T(X)

is said to be monotone if x C Z "* T(X) C T(Z), and a transformation U inctude6

T on X if T(X) C U(X), in particular, if y is a real function, then the interval

function Y includes y on X if

(2.2) y(X) = fy(x) I x E X) C Y(X)

[3]. In this sense, the interval function Y is the set of atU real functions y

such that y(x) s y(x) < -y(x) for x E X, and one writes y E Y in this case. The

interval integral (2.1) is a monotone function of its integrand [i1, so that

xI xI

(2.3) f y(x)dx C f Y(x)dx for y 6 Y,
x0 x0

whether or not y has a real (Riemann or Lebesgue) integral. The real interval

of a real function, if it exists, is of course contained in its interval integral,

which always exists [1), [4]. The calculation of the interval integral of Y is

simplified if the endpoint unction y,Y of Y are Riemann (R) integrable. Then,

(2.4) JxY(x)dx = J(R)fx y(x)dx , (R)fx -y(x)J,

so that inclusions of interval integrals can be computed for integrands Z D Y

with Riemann integrable endpoint functions [I].
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3. Interval bounds. Considering the integrand of (1.6) to be a fu.. .on

f(x,u0,,...,un ) of n + 2 variables, an interval inclusion F(X,U0,U1,...,% n )

of it can be constructed by interval arithmetic [3] or otherwise. Then, interval

integration provides the following result.

Theorem 3.1. Suppose that 9 6 A is a stationary point of the functional f

defined by (1.6), A - f[g| is the corresponding stationary value of f, and the

interval functions Y0' Y' .. F Yn on X - [x 0 ,x 1 ] are such that g W E Yi" i

0,1,... ,n. Then,

x1
(3.1) A E [a,b) - f F(x,Y 0(x),Y (x)....,Y (x))dx.

x0

This result provides the two-sided bounds (1.5) for A immediately. It ap-

pears, however, that one must assume a lot about and its derivatives to use

(3.1). In many cases, one only has to assuine something about 9 (n ) (for example,

that it is bounded), and then the interval functions Yn-' ... Y1, Y0 can be

constructed by use of interval integration and the boundary conditions. For ex-

ample, suppose that

(3.2) y'' (n CEYn ,y (n1) x 0  NI [c 0 , Y"('-1 (x) 6 [cx 1 ]

Note that inteAvuL boundary conditions can be prescribed. Thus, interval tech-

niques can be useful in practical problems in which boundary conditions are not

known precisely, or in which it is desired to study the behavior of a system over

a range of boundary conditions.

Indefinite interval integration of (3.2) gives the functions

x x
(3-3) YL W)- [NIOBO] " Yn(t)dt, YR W - [alesI + f Yn(t)dt.

x 0  x 1

Definition 3.1. The interval function Y n is said to be admi64ibt for

the boundary conditions (3.2) if [all Ie Y(l) N NO I c- YR(N) and the

4I L



intersection YL (x) IY R(XW is nonempty for x E X.

Theorem 3.2. If the interval function Y is admissible for the boundary

conditions (3.2) and 9 ( n ) E yn then

(3.4) 9(n-1) e .n = Y Y
n- L R~

Proof. By construction, the interval function Yn-1 defined by (3.4) con-

tains all real functions g such that g' E Y n g(x0) E [n0,B 0 and g(x1) E [a11]

as a consequence of the definition of the indefinite interval integral [1]. QED.

It should be noted that Y n- constructed in this way also contains other

real functions which satisfy the boundary conditions, but may have no continuity

or differentiability properties at all. An example of the actual construction

of an interval function of this type is given in the next section.

4. The simplest problem of the calculus of variations. This is the case

n = 1 of (1.6) [21, and to simplify matters further, the boundary conditions

(4.1) Y(x0  y 0 , Y(x) Y1

will be imposed. The class A of admissible functions will be restricted to those

for which y' is bounded, that is, y, E [m,m], where m,m denote constant interval

functions with the corresponding real value. Interval integration gives

(4.2) Y (x) 0 + [r,m (x - x), Y (x) = y - x-

L 00 R Ir~n(

and thus Y- [m,m is admissible for (4.1) if

(4.3) m ! m -' m

1 0

The graph of the corresponding interval function Y0 is thus a parallelogram with

vertices (x0 ,Y0) and (x1,YI), bounded above by the intersecting lines

(4.4) Y'L(x) = y0 + M(x - x 0 ), y(X) yl - r1(x - xl)

and below by

-5-



L.

(4 .5 ) W x ) -Y o + m (x -x o ) ,  Y 
x  " m- (x -x 1 )

Using this interval function Yoe one has immediately that

x1

(4.6) fly) E f F(X,Y (x),(,m)dx
x0  

0

on the class A of functions satisfying (4.1) for which y' E [R,m]. For example,

suppose that

xl
(4.7) fly) - f (1 + (Y)Ldx,

x0

and one seeks A w in fly] on A. Since

(4.8) (y-)2 C 2O'.Ax(m2'2

which gives

xI

(4.9) A 6 [x 1 - x0 ,d), d - F -+mdx - (x 1 - x) Z + (y - YO
)
Z,

x 
0

since each admissible YI contains y' m , and thus each Y contains the degen-

erate interval (real) function

(4.10) yn(x) y0 + m(x - x 0 ),

for which the value F[ym ] - d is attained, so that A 5 d. The lower bound in

(4.9), A -  - can be attained by astep function s E Y0 if 0 E Y In

variational problems, additional restrictions are often imposed on the elements

of Y (continuity, boundedness of derivatives) to eliminate solutions such as0

this, and one works with the functions in Y0 
n 

A 121; in this class, however,

L two-sided bounds may not be available as they are in interval analysis.

S. Eigenvalue problems. For selfadjoint linear operators A in a Hilbert

space H, its egenvatueh are critical values of the Rayteigh quotient

(5.1) R(y) - (Ay,y)/(y,y), y 0 0.

An eigenvalue A satisfies the Euler equation

-6-



(5.2) Ay- Xy 0, y 0 0,

and the corresponding critical points y in a function space H are called e.i.n-

6unctio" of A belonging to X [2]. If the inner product C , ) in H is defined

in terms of integrals, then interval integration can be applied as above to find

lower and upper bounds for eigenvalues of A. If Y0 " Y1 are interval functions

such that 9 E Y0' 0 C Y0, and A9 E Y for some eigenfunction of A, then

(5.3) X [ (Y1,Yo)/(YoY 0 (a,b)

for the corresponding eigenvalue A, thus giving an interval bound. Once again,

the interval functions Y0 ' YI are to be determined in some way, perhaps on the

basis of an approximate solution of (5.2). If A is an integral operator, then

one may use interval integration to get Y, = AY On the other hand, if A is a

differential operator, it may be possible to obtain Y0 from YI by use of interval

integration and the boundary conditions, as before. For example, suppose that

(5.4) Ay = -y", y(O) = y(n) = 0.

Since eigenfunctions are determined by (5.1) and (5.2) only up to a multiplicative

constant, it is useful to introduce a normalization condition which excludes y = 0

in particular. In this case, suppose that -y"(w/2) = 1, and take Y defined by

(5.5) oy1 (0) = [0,1], y IX) = 1, 0 < x <I, y(O) = [0,1],

(y (x) is an interval step function [11), and

!, .(5.6) l(x) - (2/7)x, 0 s x < ir/2, Yl = (2/r)(7F - x), i/2 <

By integrating Y (x) twice and using the boundary conditions in (5.4), one gets

Y0 defined by

(5.7) yo(X) =2(- x), 0 x !5,

and

7
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: 2
O( -37'0 X Y/2,

(ir - x)( - 0/ 5 x ! T12

~Computation with these interval functions gives

(58)1 1 17

(5.) (1l 0 6 15',2 1 Y0 'Y0 120 142

and thus eigenvalues A belonging to eigenfunctions 9 E Y0 will be elements of the

inteAvt Rayteigh quotient (YI,Y 0 )/IY0 ,Y 0 ), that is,

(5.10) X A = 2- 211 C (0.4052 , 2.50331.

In this case, 9(x) = sinx is the only eigenfunction of A contained in Y0 , and

(5.10) provides lower and upper bounds for the corresponding eigenvalue X = 1.

The endpoint functions (5.5) are crude approximations to sin x, and it can be

noted that (5.7) and (5.8) define an interval function which, when normalized,

is smaller than Y and bounded by better approximations to the eigenfunction. This

suggests an iteration process, the next step being to take (2/)2Y0 = Y as a newI1

interval function containing -y", which leads to an improved Y and a corresponding
0

value AI for the interval Rayleigh quotient. Indeed, if A C A 0, then the exis-

tence of an eigenvalue A E A1 of A is guaranteed by the Schauder fixed point theo-

rem [5].

6. Variational problems in several dimensions. The extension of Theorem 3.1

to problems in several independent variables follows immediately from the corres-

ponding extension of the interval integral. In Rv, let x = 1',2.. ), and

the region of integration be denoted by S. Following the prescription given in

(11, partition Q by elements Q 1 , 2 , with measures (areas or volumes)

dO., i = 1,2,...,m, and let

(6 .)inf {Y() sup fY(x)}],

-8-
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where Y is an interval-valued function defined on 2. If D denotes the set of
m

of all partitions of S2 into m subregions, then

m

(6.2) E = f Y Y.dQi, m = 1,2,3,...,

m

form a nested sequence of closed intervals, and thus the interval integral of

Y over 0,

(6.3) fY(x)df = r m

m=1

exists for arbitrary Y. It is not difficult to show that this interval integral

is an inclusion monotone function of its integrand, using the same arguments as

in [1].

Now, one can let D. denote the vector of partial differential operators of1

order i in Rv, for example, D 1 = (W/i ,1/3&. ) and consider the func-

tional

(6.4) fly] = ff(x,y,DIy,D2y .... DnY)dQ,

which is the analogue of (1.6) in R . If F is an interval inclusion of the inte-

grand of (6.4), and X = f[f] is a stationary value of f, then interval integration

provides the following result.

Theorem 6.1. If 9 is a stationary point of f and interval vector functions

Y0 , Y, ... ,I Y exist such that D. E Yi, i = 0,1,...,n on Q, then

(6.5) X = f[Y] G J F(x,Y0 (x),Y (x),...,Yn(x))dSI.

As an application of this theorem, suppose that in R
3 
the values of y are

prescribed on the boundary a of a region Q, and one wishes interval bounds for

(6.6) A= min f,(a
2
y/3

2 
+ a2y/a 2 + a2y/D 2)dQ

9-



over some class A of admissible functions. A construction similar to the one

in §3 can be used, or Y0 can be constructed on the basis of an approximate solu-

tion of the Euler equation for (6.6), which in this case is simply the Laplace

equation

(6.7) Ay -0, Y Y0 on fil.
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